
University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

ASSIGNMENT 7

Reading:
105 Notes 8.1-8.3, 6.1-6.2 (again).
Hand & Finch 4.7, 5.1.

1.
[This a (hopefully clearer) version of Hand &
Finch 4.17, “tetherball”.] A mass m is attached
to a weightless string that initially has a length
s0. The other end of the string is attached to
a post of radius a. Neglect the effect of grav-
ity. Suppose that the mass is set into motion.
It is given an initial velocity of magnitude v0

directed so that the string remains taut. The
string wraps itself around the post, causing the
mass to spiral inward toward it.
(a)
Write the Lagrangian in terms of ẋ and ẏ, the
cartesian velocity components of the mass. Is
there a potential energy term?
(b)
Use as generalized coordinates s(t), the length
of the part of the string that is not yet in con-
tact with the post, and ψ(t), the azimuthal angle
at which the string barely fails to make contact
with the post. Express ẋ and ẏ in terms of these
generalized coordinates and their time deriva-
tives.
(c)
Write a (constraint) equation relating ṡ to ψ̇.
Use it to greatly simplify your answers for (b).
Rewrite the Lagrangian using s as the only gen-
eralized coordinate.
(d)
Use the Euler-Lagrange equation to obtain an
equation of motion for s. (You don’t need to
solve it.)
(e)
Since the Lagrangian has no explicit time de-
pendence, and it depends quadratically on ṡ, the
total energy is conserved. Write an equation set-
ting the initial energy (expressed in terms of v0)
equal to the energy at an arbitrary value of s
(expressed in terms of s and ṡ).

(f)
Use this equation to express dt in terms of ds
multiplied by a function of s. Integrate it to solve
for the time T that elapses before the mass hits
the post. You should obtain the simple result

T =
s2
0

2av0
.

(g)
Is the angular momentum of the mass about the
axis of the post conserved in this problem? Why
or why not?

2.
Hand & Finch 4.19.

3.
Hand & Finch 4.21.

4.
Consider a particle of mass m that is constrained
to move on the surface of a paraboloid whose
equation (in cylindical coordinates) is r2 = 4az.
If the particle is subject to a gravitational force
−mgẑ, show that the frequency of small os-
cillations about a circular orbit with radius
ρ =

√
4az0 is

ω =
√

2g
a + z0.

5.
An orbit that is almost circular can be con-
sidered to be a circular orbit to which a small
perturbation has been applied. Take ρ to be the
(unperturbed) circular orbit radius and define

g(r) =
1
µ

∂U(r)
∂r

,



where µ is the reduced mass and U is an arbi-
trary potential. Set the radius r = ρ + x, where
x is a small perturbation.
(a)
Starting from the differential equation for r and
using the fact that the angular momentum l is
constant, substitute r = ρ + x. Retaining terms
only to first order in x, Taylor expand g(r) about
the point r = ρ, and show that x satisfies the
differential equation

ẍ +
[3g(ρ)

ρ
+ g′(ρ)

]
x = 0 ,

where g′(ρ) is dg/dr evaluated at r = ρ.
(b)
Taking the force law to be F (r) = −kr−n, where
n is an integer, show that the angle between two
successive values of r = rmax (the “apsidal an-
gle”) is 2π/

√
3 − n. Thus, if n > −6, show that

in general a closed orbit will result only for the
harmonic oscillator force and the inverse square
law force.

6.
Consider the motion of a particle in a central
force field F = −k/r2 + C/r3.
(a)
Show that the equation of the orbit can be put
in the form

1
r

=
1 + ε cosαθ
a(1 − ε2)

,

which is an ellipse for α = 1, but is a precessing
ellipse for α �= 1.
(b)
The precessing motion may be described in terms
of the rate of precession of the perihelion, where
the term perihelion is used (loosely) to denote
any of the turning points of the orbit. Derive
an approximate expression for the rate of pre-
cession when α is close to unity, in terms of the
dimensionless quantity η = C/ka.
(c)
The ratio η is a measure of the strength of the
perturbing inverse cube term relative to the main
inverse square term of the force. Show that the
rate of precession of Mercury’s perihelion (40′′ of

arc per century) could be accounted for classi-
cally, if η = 1.42 × 10−7. [Mercury’s period and
eccentricity are 0.24y and 0.206, respectively.]

7.
A He nucleus with velocity v = 0.05c is nor-
mally incident on an Au foil that is 1 micron
(1 × 10−6 m) thick. What is the probability
that it will scatter into the backward hemi-
sphere, i.e. bounce off the foil? (Please supply a
number.)

8.
Calculate the differential cross section dσ/dΩ
and the total cross section σT for the elastic
scattering of a point particle from an impen-
etrable sphere; i.e., the potential is given by
U(r) = 0, r > a; U(r) = ∞, r < a.


